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Abstract: Compared to point estimate, interval estimate of compressive strength of concrete from limited 

test data would give a better confidence on the evaluated statistics, which can be obtained with Normal ap-

proximation theory. In this study, a non-parametric methodology based on bootstrap re-sampling for interval 

estimate was found to be more suitable. Optimal numbers of bootstrap samples and optimal number of data 

in each bootstrap sample in such analysis demand attention. Using cube test results, these aspects of boot-

strap re-sampling as applied to interval estimate from concrete test data are investigated in this paper. It is 

recommended that for evaluation of mean or standard deviation of concrete compressive strength, optimum 

number of bootstrap samples should be between 1,000 and 2,000 with equal to or more than 25 data in each 

sample. The corresponding numbers for estimation of characteristic strength of concrete was advocated as 

4,000 to 5,000 bootstrap samples, each of 30 or more data. Normal approximation theory might yield slightly 

higher estimate of characteristic strength, which could be detrimental in case of health evaluation or safety 

margin assessment of important existing structures. 

 

Keywords: bootstrap, interval estimate, concrete test data analysis, non-parametric method, characteristic 

strength. 

 

1.  Introduction 
 

At times, compressive strength of concrete is 

required to be evaluated from limited test data, 

which would be imprecise, and lack the estimate of 

the precision. This may be addressed by estimation 

of confidence interval of the statistics from Normal 

approximation theory as reported in literature. 

It would be brought out in this paper that non-

parametric interval estimates would be better suited 

for limited data sets. One simple non-parametric 

method is application of bootstrap re-sampling 

technique for interval estimate of the statistics of 

interest. For efficient application of the procedure, 

the effect of different numbers of bootstrap samples 

as well as the number of data in each bootstrap 

sample on such analysis demands due consideration. 

Although some applications of bootstrap for ad-

dressing issues related to concrete have been re-

ported in literature, studies pertaining to its applica-

tion in evaluation of statistics of compressive 

strength test data or estimate of characteristic 

strength of concrete are rare. In this paper, the vari-

ous aspects of bootstrap sampling as applied to  
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analysis of concrete test data are investigated. This 

is expected to provide the practicing engineers and 

analysts with general guidelines regarding selection 

of the sample size while applying bootstrap method 

for interval estimate of statistics and evaluation of 

characteristic strength from limited concrete test 

data. The study is based on the data of compressive 

strength of concrete obtained from cube test results, 

taken from a structure. 

Bootstrap technique was first proposed by 

Efron for variance estimation of sample statistics 

based on observations (Efron and Tibshirani [1]). 

As compared to the classical statistical inferences 

based on normality conditions, bootstrap re-

sampling is more generalized and versatile. Though 

bootstrap is computationally intensive, with today’s 

computational resources it is not anymore a prob-

lem, and bootstrap may be efficiently applied for 

uncertainty analysis and confidence estimation for 

experimental data statistics. With the assumption 

that the observations are independent and come 

from the same distribution, bootstrap technique can 

be applied for interval estimate for mean, standard 

deviation, or any other statistic (Good and Hardin 

[2]). The interval indicates the precision of the cor-

responding point estimate. 

81



  

 

 

The bootstrap technique is to draw a certain 

number of samples, with replacements - randomly 

from the set of observations, with a probability as-

signed to each observation. This forms one boot-

strap sample. From a certain number of such boot-

strap samples, the interval estimate of the statistics 

of interest may be obtained. When equal probability 

is assigned to each observation, it is non-parametric 

bootstrap. In parametric bootstrap, the correspond-

ing probability distribution parameters would be 

used for re-sampling process. In unbalanced boot-

strap algorithm, the actual number of replications of 

individual sample points may not be equal to the 

number of bootstrap samples. The constrained algo-

rithm, in which these two numbers are equal, is the 

balanced bootstrap technique. Further details of the 

method may be found in texts like Efron and Tib-

shirani [1] and Tung and Yen [3]. 

Babu and Bose [4] explored the confidence 

bounds obtained by non-parametric bootstrap for a 

wide class of statistics and compared them with 

those obtained by the Normal approximation theory. 

It was inferred from the results that the probability 

estimates of confidence intervals by bootstrap were 

unconditionally superior to the ones from Normal 

approximation theory. 

Process capability index (Cpp) is an indicator 

for evaluating the capability of a process and esti-

mation of confidence interval of the Cpp that is con-

sidered important for statistical inference on the 

process. Chou Chao-Yu et al. [5] studied the behav-

ior of 95% bootstrap confidence intervals for esti-

mating process incapability index (Cpp). Industrial 

processes are often idealized with non-normal dis-

tributions, and Burr distribution was used by the 

authors for the study. In general, larger sample size 

gave higher coverage percentage. While accounting 

the effect of non-normality, smaller skewness and 

kurtosis coefficients gave higher coverage percent-

age, with shorter confidence interval and smaller 

standard deviation of the bootstrap interval. From 

comparison of four bootstrap techniques, the stand-

ard bootstrap (SB), the percentile bootstrap (PB), 

the biased-corrected percentile bootstrap (BCPB), 

and the biased-corrected and accelerated (BCa), the 

coverage percentage of BCa interval was always 

found to be the best, followed by BCPB interval. It 

was also mentioned that the BCa interval produced 

the longer average interval length and the larger 

standard deviation of bootstrap interval length. 

Thus, bootstrap technique was found to be very ef-

ficient for evaluation of confidence intervals of pro-

cess capability index. 

In the event of mineral wastes reused in con-

struction materials, leaching tests are performed for 

evaluation of the environmental impact of the reuse. 

Coutand et al. [6] applied bootstrap technique for 

quantitative evaluation of uncertainty of experi-

mental data from leaching test on cement based ma-

terials as a function of the number of tests per-

formed. In general, the interval was found to be 

wider for lower number of experimental observa-

tions. Large dispersion was observed in the experi-

ments carried out and it was mentioned that analy-

sis of leaching test results should be performed with 

caution. Confidence interval was estimated using 

bootstrap technique and standard procedure and it 

was observed that while the upper confidence limit 

was not significantly different in the two methods, 

the standard procedure overestimated the lower 

confidence limit. 

In another study by Dauji et al. [7] the applica-

tion of bootstrap for interval estimate of the mean 

and standard deviation of limited concrete test data 

was explored. The variations of the estimates with 

varying number of bootstrap samples from 200 to 

5,000, each consisting of 20 samples, were exam-

ined and compared with those from the Normal ap-

proximation theory. The latter was found to overes-

timate the precision of the corresponding point es-

timates of statistics like mean and standard devia-

tion of the test data. It was concluded that the non-

parametric method of bootstrap is better suited for 

interval estimate of statistics than Normal approxi-

mation theory when dealing with limited test data 

of compressive strength of concrete. However, the 

effect of varying number of samples in each boot-

strap sample was not studied. Further, the character-

istic strength of concrete was not examined. These 

aspects would require attention for efficient applica-

tion of the technique by practicing engineers. 

In health and condition monitoring of im-

portant concrete structures, several properties of 

concrete like, the characteristic strength of concrete, 

the mean compressive strength of concrete, and its 

standard deviation play significant roles. Applica-

tion of bootstrap technique for estimate of such 

properties from concrete test data is scarce in litera-

ture. As has been brought out in the foregoing dis-

cussion, bootstrap might be an efficient tool for in-

terval estimate of these properties of concrete, espe-

cially when the available data is limited as in case 

of non-destructive test data of important structures. 

Thus, there exists scope of development of a set of 

guidelines for application of bootstrap methodology 

for interval estimate of concrete data statistics, and 

more importantly, its characteristic strength. This is 

the purpose of the present paper. 

 

2. Data and methodology 

 
Cube tests are required as a quality control 

measure for any concreting work executed and the 

results of the cube tests conducted during 
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construction of a structure was available for the 

study. The structure was reinforced concrete (RC) 

framed type having approximate overall plan 

dimensions of 160 m  X  175 m and consisted of 

six units separated by expansion joints. The 

different units had 2 to 6 stories of height 6 m each 

and were founded on raft 5 m below ground level. 

A few units had thick concrete walls above ground 

as well as partial basement with thick concrete 

external walls and internal partitions. The structure 

had a design concrete strength of 25 MPa, was 

designed according to IS codes of practice, and was 

constructed in late 1980s with the same grade of 

concrete as was used in design. This was an 

industrial structure having floor loadings in the 

order of 10 to 60 kN/m
2
 and strict quality control 

was implemented during construction. 

As a sample application of the bootstrap 

method for interval estimation of limited concrete 

test data statistics, 519 compressive strength data of 

cube tests from the structure were taken. 

Representative 40 samples were randomly selected 

from the complete set of test results to simulate the 

limited concrete test data.  The unbalanced non-

parametric bootstrap algorithm is presented in Fig. 

1. 

The non-parametric unbalanced bootstrap 

method was applied for interval estimation of the 

statistics of interest. For demonstration of the 

technique in strength estimation from concrete 

compression test results, the mean and standard 

deviation were chosen as statistics of interest. 

Dealing with sample size of 40, the number of data 

in each bootstrap sample was varied from 15 to 35 

in steps of 2, while keeping the number of bootstrap 

samples like 200, 400, 600, 800, 1,000, 1,500, 

2,000, 3,000, 4,000, and 5,000 and the variations 

studied. Interval estimate with Normal 

approximation theory was thereafter compared with 

those from bootstrap. Furthermore, sensitivity of 

the results to the choice of representative sample, 

different numbers of data in each bootstrap sample 

and different numbers of bootstrap samples were 

studied. Subsequently, the characteristic strength of 

concrete from bootstrap analysis of the compressive 

strength test data was evaluated and compared to 

that obtained by Normal approximation theory. 

We propose a set of guidelines for application 

of the bootstrap method for interval estimate of the 

mean strength, the standard deviation, and the 

characteristic strength of concrete. This essentially 

consists of the optimal number of bootstrap samples 

and optimum number of data in each bootstrap 

sample to be used for interval estimate of each of 

the three variables and this is based on two 

considerations: computational efforts and accuracy 

of estimate. We plot the Box and Whisker plots that 

show the maximum, the minimum, the 1, 5, 25, 75, 

95, and 99 percentiles for each case. The minimum 

number of samples/data beyond which the 

variations in the various percentiles stabilize 

indicate optimality and is recommended. 

 

 
Fig. 1 – Flowchart for unbalanced non-parametric 

bootstrap technique 

 

3. Results and discussion 

 
3.1  Data characteristics 

In this study, cube test data was taken from a 

structure that contained 519 records. Assigning 

equal probability to each of the 519 data, i.e. 

assuming uniform distribution, two different 

samples each of 40 data were randomly selected 

from the dataset. The descriptive statistics of 

population (519 data), and two representative 

samples, each consisting of 40 data, drawn as 

described above, are presented in Table 1. 

 

Table 1 Descriptive statistics of population and 

 samples 

Statistic 
Popula-

tion 

Sample 

1 

Sample 

2 

Max. (MPa) 39.90 39.80 39.90 

Min. (MPa) 23.50 23.90 23.90 

Mean (MPa) 35.62 35.50 35.48 

Median (MPa) 36.50 36.55 36.55 

Std. deviation (MPa) 3.57 3.67 3.71 

C.O.V. 0.10 0.10 0.10 

Skewness -1.11 -1.15 -1.09 

Kurtosis 3.86 3.98 3.86 

 

It may be mentioned that the descriptive statis-

tics of the two samples match well with that of the 

population, and can be taken as representative sam-

ples. From Table 1, it may be noted that the mean 

and the median of the data sets are quite close, and 

the minimum value is far from the mean and medi-
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an, indicating a long tail towards the left. It may be 

also observed that the distribution of data is asym-

metric towards the left, the negative skewness indi-

cating that the frequency is more below the mean. 

The peakedness of the distribution is more than, but 

close to the Normal distribution (kurtosis = 3), as 

indicated by the kurtosis value. The coefficient of 

variation is around 10%, which indicates the varia-

bility of the observations. 

For constructing the histograms, the data was 

grouped into intervals according to Eq. (1), where, 

‘I’ is the number of intervals and ‘N’ is the number 

of records (Ranganathan [8]). 

 

   (1) 

The histograms of the population and two 

representative samples are presented in Fig. 2. It 

may be observed that none of the histograms of the 

population or two of the bootstrap samples 

resembles normal distribution. It may be observed 

that around 37% of the data falls between 37 and 40 

MPa while around 30% falls between 35 MPa and 

37 MPa. As mentioned earlier, the design strength 

for the structure was 25 MPa. According to the 

Indian code of practice, adopting a conservative 

standard deviation of 4 MPa [9], the target strength 

would be 31.6 MPa [10, 11]. It may be noted that 

the standard deviation for mix design (4 MPa) is 

higher as compared to that obtained from the test 

results (3.57 MPa). Possibly owing both to the 

conservative mix design and to the strict quality 

control implemented in the construction of this 

important facility, the recorded results of the 

concrete cubes taken during construction display 

the observed localization around the higher values. 

Normal and lognormal distributions were fit to 

the representative samples (40 data). Standard 

hypothesis tests like Chi-square and K-S tests were 

applied to the fitted distributions. Akaike 

Information Criteria (AIC) and Bayesian 

Information Criteria (BIC) were also evaluated to 

judge suitability of the fitted distribution functions. 

Normal distribution could not be rejected by 

Chi-square test at 10% and 1% level of significance, 

respectively, for sample 1 and Sample 2, and by 

Kolmogorov-Smirnov test at 10% level of 

significance for both. AIC and BIC for the fitted 

distributions were in agreement for both samples, 

and normal distribution was found to be more 

suitable by both metrics. The fitted distributions are 
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Fig. 2 – Histograms of population and representative samples 
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(a) Sample 1     (b) Sample 2 

Fig. 3 – Fitted PDF for representative samples
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presented in Fig. 3 for the two representative 

samples. However, keeping in mind the shapes of 

the histograms, it was felt that application of non-

parametric method would be more appropriate for 

interval estimates. 

 

3.2  Interval estimate by Normal approximation 

 theory 

The point estimate of the mean of concrete cu-

be strength was 35.5 MPa for Sample 1 and 35.48 

MPa for Sample 2, while the standard deviation was 

3.67 MPa for Sample 1 and 3.71 MPa for Sample 2. 

Applying Normal approximation theory, the two-

sided 99% confidence interval estimated for the 

mean of the Sample 1 was 33.93 MPa - 37.07 MPa 

and that of Sample 2 was 33.89 MPa - 37.07 MPa. 

Similarly, by Normal approximation theory, the 

two-sided 99% confidence interval estimated for 

standard deviation was 2.90 MPa - 5.53 MPa for 

Sample 1 and 2.93 MPa - 5.59 MPa for Sample 2. 

 

3.3  Interval estimate by bootstrap: variations 

 with number of bootstrap samples 

The findings of interval estimate of the mean 

and standard deviation of the two samples by un-

balanced non-parametric bootstrap is presented in 

Fig. 4 through Fig. 7. The maximum, the minimum, 

the 1, 5, 25, 75, 95, and 99 percentiles, and the 

mean obtained with different numbers of bootstrap 

samples for the samples from three runs are graph-

ically depicted in the following Box-Whisker plots. 

The different percentiles for mean of Sample 1 

are plotted in Fig. 4. It may be observed that across 

the 3 runs, for 1,000 bootstrap samples and above, 

the mean and the median are almost same. Also, the 

25 and 75 percentile falls between 35 MPa and 36 

MPa, in all 3 runs. Furthermore, the range of 5 and 

95 percentile is very close across the runs, roughly 

between 34 MPa and 36.8 MPa. There appears to be 

slight variations in the 1 and 99 percentile for any 

number of bootstrap samples, for all 3 runs. While 

for 1,000 bootstrap samples and above, the maxi-

mum hovers around 38 MPa, there exists substan-

tial variation in the minimum value. This behavior 

is observed for all 3 runs. 

In Figure 5, which depicts the different percen-

tiles for mean of Sample 2, the near equality of 

mean and median, and range for 25 and 75 percen-

tile between 35 MPa and 36 MPa are observed for 

all 3 runs, in the cases of 1,000 bootstrap samples 

and above. Furthermore, the range of 5 and 95 per-

centile is very close across the runs, roughly be-

tween 34 MPa and 36.8 MPa, as before. The varia-

tions of 1 and 99 percentiles for any number of 

bootstrap samples are noticed in all 3 runs, similar 

to Sample 1. However, in this case, the variation of 

the maximum value is slightly more than the earlier 

case, while the variation of the minimum value is 

similar. 

From the foregoing discussion, it may be con-

cluded that for the estimate of the mean from lim-

ited data, number of bootstrap samples should be 

more than 1,000. Considering the computational 

efforts, it is suggested to use 1,000-2,000 samples 

for interval estimate of mean from limited concrete 

test data. 

The percentiles for standard deviation of Sam-

ple 1 are presented in Fig. 6. Across all runs, the 

mean and the median values are different for almost 

all number of bootstrap samples. The 25 and 75 

percentile ranges from 3 MPa to 4 MPa, with slight 

variations. Beyond and including 1,000 samples, 

the 1, 5, 95, and 99 percentiles are similar for all 3 

runs, and the values are around 2 MPa, 2.4 MPa, 

4.7 MPa, and 5.2 MPa, respectively. The variations 

of the maximum and minimum are more compared 

to the other percentiles, and this can be observed in 

all runs. 

From the percentiles for standard deviation 

plotted in Fig. 7 for Sample 2, it is observed that the 

mean is slightly higher than the median values for 

almost all number of bootstrap samples, across the 

runs. The 25 and 75 percentile ranges from 3 MPa 

to 4 MPa is maintained, with slight variations for 

1,000 bootstrap samples and above. Beyond and 

including 1,000 samples, the 1, 5, 95, and 99 per-

centiles are similar for all 3 runs, and the values are 

around 2 MPa, 2.5 MPa, 4.8 MPa, and 5.2 MPa, 

respectively. This is almost similar to the values 

obtained for Sample 1. As before, the variations of 

the maximum and minimum are more compared to 

the other percentiles, and this can be observed in all 

runs. 

It is suggested to adopt bootstrap samples 

equal to 1,000-2,000 for interval estimate of the 

standard deviation of limited concrete test data, in 

line with that for the mean. Further in this sub-

section, the discussion is based on the estimates 

from 2,000 bootstrap samples. 

The maximum, the minimum, and the spread 

obtained from the 3 bootstrap runs, each of 2,000 

samples, and that obtained with Normal approxima-

tion theory are compared next. The values obtained 

for the same are presented in Table 2 for the mean 

and Table 3 for the standard deviation. 

The upper and lower bounds for 99% confi-

dence interval, obtained for different runs for the 

individual samples are in good agreement, indicat-

ing the robustness of the method. It can be observed 

that the upper bound for 99% confidence bound by 

Normal approximation theory and bootstrap tech-

nique obtained for the mean is quite close, with the 

former a little lower. Corresponding lower bound is
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Fig. 4 – Box-Whisker plots for variations for 3 runs for Sample 1: mean 
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Fig. 5 – Box-Whisker plots for variations for 3 runs for Sample 2: mean 
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Fig. 6 – Box-Whisker plots for variations for 3 runs for Sample 1: standard deviation 
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Fig. 7 – Box-Whisker plots for variations for 3 runs for Sample 2: standard deviation 
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Table 2 – Interval estimate for mean from 2,000 bootstrap samples and Normal approximation theory 

Data Method Upper bound – 

99% (MPa) 

Lower bound – 

99% (MPa) 

Spread –  

99% (MPa) 

Sample 1 

Bootstrap run 1 37.30 33.04 4.26 

Bootstrap run 2 37.35 33.39 3.96 

Bootstrap run 3 37.33 33.21 4.12 

Normal approximation theory 37.07 33.93 3.14 

 

Sample 2 

Bootstrap run 1 37.32 33.07 4.25 

Bootstrap run 2 37.47 33.23 4.24 

Bootstrap run 3 37.33 33.19 4.14 

Normal approximation theory 37.07 33.89 3.18 

 

Table 3 – Interval estimate for standard deviation from 2,000 bootstrap samples and Normal approximation 

 theory 

Data Method Upper bound – 

99% (MPa) 

Lower bound – 

99% (MPa) 

Spread –  

99% (MPa) 

Sample 1 

Bootstrap run 1 5.41 1.89 3.52 

Bootstrap run 2 5.32 1.83 3.49 

Bootstrap run 3 5.46 1.92 3.54 

Normal approximation theory 5.53 2.90 2.63 

 

Sample 2 

Bootstrap run 1 5.40 1.85 3.55 

Bootstrap run 2 5.40 1.88 3.52 

Bootstrap run 3 5.39 1.86 3.53 

Normal approximation theory 5.59 2.93 2.66 

 

overestimated by the Normal approximation theory, 

yielding a narrower interval for mean, as compared 

to the bootstrap method. This behavior is observed 

in case of both the samples, and in similar lines as 

reported by Coutand et al. [6]. Thus, it may be in-

ferred that the Normal approximation theory over-

estimates the precision of the point estimate of the 

mean, relative to bootstrap. Furthermore, as the 

lower bound of the mean value of compressive 

strength of concrete, for a particular confidence lev-

el would be of interest, Normal approximation theo-

ry would yield higher strength than obtained by ap-

plying non-parametric bootstrap. 

The robustness of the bootstrap technique is 

again observed with the close agreement of upper 

and lower 99% confidence bounds of the standard 

deviation for the two samples. For both samples, it 

is observed that the upper bound as well as the low-

er bound is overestimated by Normal approxima-

tion theory as compared to the bootstrap, with the 

overestimation more in case of the lower bound. As 

reported by Coutand et al. [6], and also found in 

case of interval estimate of mean in the present 

study, the lower limit is affected in Normal approx-

imation theory. Thus, like in case of mean, the pre-

cision of point estimate of the standard deviation of 

the samples is overestimated by Normal approxima-

tion theory, relative to the non-parametric bootstrap 

method applied here. 

 

3.4  Interval estimate by bootstrap:  

variations with number of data in each 

bootstrap sample 

The findings of interval estimate of the mean 

and standard deviation of the two samples by un-

balanced non-parametric bootstrap is presented in 

Figs. 8 and 9. With a range of 1,000-2,000 boot-

strap samples was established in the earlier sub-

section, the results presented in the present sub-

section focus on the runs with 1,500, 2,000, and 

3,000 bootstrap samples. The maximum, the mini-

mum, the 1, 5, 25, 75, 95, and 99 percentiles, and 

the mean obtained with different numbers of boot-

strap samples for the samples from three runs are 

graphically depicted in the following Box-Whisker 

plots. 

The percentiles for mean of Sample 1 and 

Sample 2 are presented in Fig. 8. It may be ob-

served that for all cases, the median for mean is 

around 35.5 MPa. For 25 data in each bootstrap 

sample and above, the 25 and 75 percentiles are 

approximately 35 MPa and 36 MPa for any number 

of data in each bootstrap sample. Below 25 data in 

each bootstrap sample, even though the median is 

similar, the spread increases for all the percentiles, 

in general. In almost all the cases, the mean is 

slightly lower than the median. The variations of 

the maximum and minimum are more compared to 

the other percentiles, and this can be observed in all 
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cases. This behavior is observed for both Sample 1 

and Sample 2, for all three cases (1,500, 2,000, and 

3,000 bootstrap samples) presented here. 

The percentiles for standard deviation of Sam-

ple 1 and Sample 2 are presented in Fig. 9. It may 

be observed that, for and above 25 data in each 

bootstrap sample, the median for standard deviation 

is approximately 3.6 MPa and the 25 and 75 per-

centiles being around 3 MPa and 4 MPa, respective-

ly. Below 25 data in each bootstrap sample, the 

spread is more for almost all the percentiles, though 

the median remains almost same. The variations of 

the maximum and minimum are more compared to 

the other percentiles, and this can be observed in all 

cases. This behavior is observed for both Sample 1 

and Sample 2, for all three cases (1,500, 2,000, and 

3,000 bootstrap samples) presented here.
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Fig. 8 – Box-Whisker plots for variations of mean for 1,500, 2,000, and 3,000 bootstrap samples 

(Sample 1 and Sample 2) 
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Fig. 9 – Box-Whisker plots for variations of standard deviation for 1,500, 2,000, and 3,000 bootstrap samples 

(Sample 1 and Sample 2) 

 

Hence, it may be concluded that for the inter-

val estimate of the mean and standard deviation 

from limited data, the number of data in each of the 

bootstrap samples should be equal to or more than 

25. The lower and upper 99% bounds and the range 

obtained for mean and standard deviation of Sample 

1 are presented in Table 4, Table 5, and Table 6 for 

1,500, 2,000, and 3,000 bootstrap samples, respec-

tively. It may be observed in Table 4, that for 1,500 

bootstrap samples, with increasing number of data  

 

in each bootstrap sample in general, the lower 

bound is higher and the upper bound lower for both 

mean and standard deviation of the sample. This 

results in a narrower range with increasing data in 

each bootstrap sample. While for 15 data in each 

bootstrap sample, the ranges for mean and standard 

deviation are 4.85 MPa and 3.86 MPa, respectively, 

they come down to 3.0 MPa and 2.63 MPa for 35 

data in each bootstrap sample. 
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Table 4 – 99% confidence interval for mean and standard deviation of Sample 1 

(1,500 bootstrap samples) 

Number of data in each 

bootstrap sample 

Mean (MPa) Standard deviation (MPa) 

Lower Upper Range Lower Upper Range 

15 32.77 37.62 4.85 1.58 5.44 3.86 

17 32.85 37.45 4.60 1.77 5.53 3.76 

19 33.05 37.03 4.25 1.80 5.44 3.64 

21 33.29 37.36 4.07 1.90 5.29 3.38 

23 33.43 37.24 3.80 1.88 5.23 3.35 

25 33.59 37.05 3.46 2.06 5.07 3.00 

27 33.49 37.07 3.57 2.02 5.20 3.18 

29 33.68 37.17 3.49 2.18 5.09 2.90 

31 33.70 37.07 3.37 2.25 5.06 2.80 

33 33.80 37.11 3.30 2.16 4.96 2.80 

35 33.97 36.97 3.00 2.31 4.94 2.63 

Normal approximation theory 33.93 37.07 3.14 2.90 5.53 2.63 

 

Table 5 – 99% confidence interval for mean and standard deviation of Sample 1 

(2,000 bootstrap samples) 

Number of data in each 

bootstrap sample 

Mean (MPa) Standard deviation (MPa) 

Lower Upper Spread Lower Upper Spread 

15 32.79 35.57 4.78 1.72 5.58 3.86 

17 33.06 37.61 4.55 1.67 5.46 3.79 

19 33.31 37.36 4.05 1.91 5.39 3.48 

21 33.40 37.32 3.92 1.93 5.30 3.37 

23 33.39 37.15 3.76 1.96 5.34 3.38 

25 33.41 37.14 3.73 2.03 5.17 3.14 

27 33.70 37.10 3.41 2.10 5.06 2.96 

29 33.48 37.17 3.69 2.18 5.08 2.90 

31 33.72 37.03 3.31 2.22 5.15 2.93 

33 33.69 37.00 3.31 2.29 4.96 2.67 

35 33.79 36.90 3.11 2.23 4.87 2.64 

Normal approximation theory 33.93 37.07 3.14 2.90 5.53 2.63 

 

Table 6 – 99% confidence interval for mean and standard deviation of Sample 1 

(3,000 bootstrap samples) 

Number of data in each 

bootstrap sample 

Mean (MPa) Standard deviation (MPa) 

Lower Upper Spread Lower Upper Spread 

15 32.75 37.59 4.84 1.56 5.65 4.09 

17 33.02 37.49 4.47 1.77 5.39 3.62 

19 33.31 37.38 4.07 1.87 5.44 3.57 

21 33.30 37.31 4.01 1.89 5.26 3.37 

23 33.41 37.19 3.78 2.04 5.24 3.20 

25 33.44 37.13 3.69 2.06 5.16 3.10 

27 33.47 37.06 3.59 2.10 5.09 2.99 

29 33.78 37.08 3.30 2.12 5.04 2.92 

31 33.61 37.04 3.43 2.24 5.12 2.88 

33 33.80 36.97 3.17 2.30 5.03 2.73 

35 33.72 36.96 3.24 2.27 4.90 2.63 

Normal approximation theory 33.93 37.07 3.14 2.90 5.53 2.63 
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It may be concluded that higher number of data 

in each bootstrap sample yields a narrower range 

for a particular confidence level, and indicates bet-

ter accuracy of estimate of the statistics of interest. 

It may also be mentioned that compared to the 

Normal approximation theory, the upper and lower 

bounds as well as the range of the mean for 99% 

confidence level closely match the values obtained 

for number of data around 33-35 in each bootstrap 

sample. For standard deviation, although the range 

obtained with Normal approximation theory and 

that with number of data of 35 in each bootstrap 

sample are similar, the upper and lower bounds 

vary, and the bounds obtained by bootstrap are low-

er than those by Normal approximation theory. 

Overestimation of the lower bounds by Normal ap-

proximation theory has been earlier reported by 

Coutand et al. [6]. 

From Tables 5 and 6 for 2,000 and 3,000 boot-

strap samples, respectively, it may be observed that 

behavior is similar to that observed for 1,500 boot-

strap samples. In fact, for all the cases with 1,000 or 

more bootstrap samples, the same behavior could 

be observed. This indicates that the ranges for a 

particular confidence level obtained with bootstrap 

re-sampling are robust and not sensitive to the 

number of bootstrap samples in range 1,500 to 

3,000. 

Similar analysis of the lower and upper bounds 

as well as the ranges obtained with 99% confidence 

level for the mean and standard deviation of Sample 

2 was performed for 1,500, 2,000, and 3,000 boot-

strap samples. The values varied marginally from 

Sample 1, but behavior observed was similar. The 

results are not reproduced here for brevity. From 

the similarity of the values of bounds and ranges 

obtained for the two different representative sam-

ples from a population, it could be concluded that 

the results of bootstrap analysis would be insensi-

tive to the choice of samples from population, and 

thus would be suitable while handling limited data 

for analysis. 

 

3.5  Interval estimate by bootstrap: recommen-

dations for analysis of limited concrete 

strength test data 

 

In general, it may be inferred that the Normal 

approximation theory indicates higher precision of 

the point estimates as compared to the non-

parametric unbalanced bootstrap method, as has 

been demonstrated by the samples from concrete 

compressive strength test data. The bootstrap meth-

od was found to be robust to the choice of initial 

sample data, the number of bootstrap samples, and 

the different bootstrap samples obtained in different 

runs. As discussed in section 3.3, it is suggested to 

adopt 1,000-2,000 bootstrap samples for optimum 

performance while evaluating interval estimate of 

the statistics with limited concrete test data. In sec-

tion 3.4, it has been concluded that the number of 

data in each of those bootstrap samples should be 

equal to or more than 25. 

 

3.6  Characteristic strength of concrete: esti-

mate by bootstrap 
According to the Indian code of practice for 

plain and reinforced concrete IS 456: 2000 (Fourth 

revision, reaffirmed in 2005 [9]), the characteristic 

compressive strength of concrete is defined as the 

strength of material below which not more than 5 

percent of the test results are expected to fall. Thus, 

the lower 5% confidence level has special signifi-

cance when dealing with concrete compressive 

strength data in India. It gives the characteristic 

strength of concrete as per the Indian standard. 

As has been established in section 3.3 and sec-

tion 3.4, the 5 percentile value of the mean strength 

of concrete was quite stable for the recommended 

bootstrap procedure. Hence, it is suggested that the 

lower 5 percentile value of mean strength of con-

crete compressive strength may be considered as its 

characteristic strength. The conditions for efficient 

estimation of the same are determined by studying 

the variation of this property with variations in 

number of bootstrap samples and number of data in 

each bootstrap sample. The results are presented in 

Table 7 and Fig. 10 for Sample 1, and Table 8 and 

Fig. 11 for Sample 2 respectively. 

It may be observed that the range of character-

istic strength obtained from the bootstrap analysis 

of Sample 1 is 33.81 MPa to 34.52 MPa (0.81 MPa) 

and that from Sample 2 is 33.82 MPa to 34.52 MPa 

(0.80 MPa), which is a very narrow band. It is also 

to be noted that the characteristic strength so ob-

tained is insensitive to the sample chosen for analy-

sis, and would be suitable for application in analysis 

of limited concrete strength data. With increasing 

number of data in each bootstrap sample, the char-

acteristic strength is observed to increase in general. 

For 1,000 and 1,500 bootstrap samples, there are 

some fluctuations, which reduce for 2,000 and 

3,000 bootstrap sample sets where the increase is 

almost monotonous. For 4,000 and 5,000 samples, 

the increase in characteristic strength with increas-

ing number of data in each bootstrap sample is 

completely monotonous. Furthermore, it may be 

observed that, in general, the increase in character-

istic strength saturates at around 30 data in each 

bootstrap sample, after which the increase is mar-

ginal. These are observed for both the samples ana-

lyzed.
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Table 7 – Characteristic strength of concrete in Sample 1 (Lower 5 percentile of mean value) 

Number of data in each  

bootstrap sample 

No. of bootstrap samples 

1,000 1,500 2,000 3,000 4,000 5,000 

Compressive strength (MPa) 

15 33.93 33.93 33.90 33.83 33.88 33.83 

17 33.81 33.87 33.99 34.02 33.97 33.95 

19 34.12 34.03 34.04 34.09 34.10 34.08 

21 34.16 34.01 34.15 34.13 34.17 34.16 

23 34.23 34.27 34.20 34.21 34.17 34.22 

25 34.23 34.23 34.23 34.25 34.23 34.27 

27 34.34 34.33 34.36 34.32 34.28 34.28 

29 34.34 34.28 34.22 34.35 34.37 34.32 

31 34.35 34.39 34.33 34.39 34.36 34.38 

33 34.52 34.48 34.41 34.42 34.42 34.42 

35 34.46 34.46 34.40 34.46 34.42 34.47 

Normal approximation 

theory 
34.52 

 

Table 8 – Characteristic strength of concrete in Sample 2 (lower 5 percentile of mean value) 

Number of data in each bootstrap sam-

ple 

No. of bootstrap samples 

1,000 1,500 2,000 3,000 4,000 5,000 

Compressive strength in MPa 

15 33.92 34.01 33.91 33.82 33.90 33.83 

17 33.88 33.90 33.94 33.98 33.97 33.96 

19 34.06 33.99 34.12 34.06 34.07 33.98 

21 34.08 34.17 34.09 34.13 34.14 34.12 

23 34.10 34.17 34.18 34.21 34.14 34.19 

25 33.83 34.23 34.28 34.23 34.24 34.23 

27 34.29 34.38 34.33 34.29 34.32 34.29 

29 34.31 34.32 34.30 34.33 34.33 34.32 

31 34.36 34.32 34.34 34.37 34.38 34.32 

33 34.29 34.44 34.40 34.36 34.38 34.38 

35 34.52 34.51 34.42 34.44 34.42 34.45 

Normal approximation 

theory 
34.49 

 

3.7  Estimate of characteristic strength of con-

crete by bootstrap: recommendations for 

analysis of limited concrete strength test  

data 
From the foregoing discussion, it is suggested 

to use around 30 data in each bootstrap sample and 

4,000 to 5,000 bootstrap samples for evaluation of 

characteristic strength of concrete from limited test 

data. Upon comparison with the corresponding rec-

ommended values for interval estimate the mean 

and standard deviation by bootstrap, both the pre-

sent values appear on the higher side. This could be  

 

due to the fact that uncertainty of estimates increas-

es towards the tails of the distributions, higher 

number of samples are required to capture the same 

in the estimates. Another aspect which deserves 

mention is that the efficiency of bootstrap proce-

dure is limited when it comes to estimation of the 

extremes, and more number of samples while esti-

mating the characteristic strength would help. 

Upon comparison with the characteristic 

strength obtained from Normal approximation theo-

ry, it is noticed that it falls in the higher end of the 

range obtained by bootstrap technique for both  
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Fig. 10 – Variation of characteristic strength of concrete for Sample 1 
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Fig. 11 – Variation of characteristic strength of concrete for Sample 2 

 

samples. Thus, evaluation of characteristic strength 

by Normal approximation theory may yield slight-

ly higher strength than that obtained by bootstrap, 

from limited test data. This would be especially 

significant when this characteristic strength goes 

into the health assessment or requalification of ex-

isting important concrete structures, where non-

conservative values may give a false impression of 

safety. 

 

4. Summary and conclusions 
 

Interval estimate of descriptive statistics by re-

sampling technique, namely, unbalanced non-

parametric bootstrapping was demonstrated in this 

paper with limited concrete test data from a struc-

ture. In general, it was found that Normal approxi-

mation theory overestimated the precision of the 

corresponding point estimates of statistics like 

mean and standard deviation of the test data in the 

study on limited concrete test data. The unbalanced 

non-parametric bootstrap technique was observed to 

be robust to the choice of initial sample and differ-

ent runs. From the results, it is inferred that the non- 

parametric method of bootstrap is better suited for 

interval estimate of statistics than Normal approxi-

mation theory when dealing with limited test data 

of compressive strength of concrete. It is suggested 

that optimum number of bootstrap samples may be 

between 1,000 and 2,000 for interval estimate of 

statistics from limited concrete test data. It is further 

advocated to use equal to or more than 25 data in 

each of those bootstrap samples. 

From the later part of the study, it is concluded 

that evaluation of characteristic strength of concrete 

from the limited test data of compressive strength 
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of cubes by application of Normal approximation 

theory would result in slightly higher value as com-

pared to that obtained by bootstrap technique. The 

optimum number of bootstrap samples to be used 

for evaluation of characteristic strength is suggested 

to be between 4,000 and 5,000, with around 30 data 

in each of the bootstrap samples. Thus, for health 

evaluation and safety margin assessment where lim-

ited concrete cores are available to evaluate the in-

situ compressive strength of the concrete, Normal 

approximation theory would yield non-conservative 

characteristic strength of concrete. Non-parametric 

methodology like bootstrap would be better suited 

as it would give conservative value of the character-

istic strength. 
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